Bioengineering
George R. Brown School of Engineering
Chair
Larry V. McIntire

Professors
Kyriacos Athanasiou
John W. Clark
David Hellums
Antonios G. Mikos
Ka-Yiu San
Kyriacos Zygourakis

Associate Professors
Fathi Ghorbel
Lydia Kavraki
Jennifer L. West

Assistant Professors
Bahman Anvari
Michael A. Barry
Rebekah Drezeck
Michael Liebschner
Jianpeng Ma
Robert Raphael

Senior Faculty Fellow
Suzanne G. Eskin

Faculty Fellow
Jorge Torres

Lecturer/Director of Laboratory Instruction
Ann Saterbak

Adjunct Professors
William Brownell
Gregory R. D. Evans
Craig J. Hartley
José A. López
Joel L. Moake
Andrew Schafer
David Sears
Jacqueline Shanks
C. Wayne Smith
Kenneth Wu

Adjunct Associate Professors
David W. Chang
Michael H. Kroll
Michael Miller
Charles W. Patrick
Peter Saggau
Mark M. Udden

Adjunct Assistant Professors
Daniel E. Epner
Karen K. Hirschi
Seongbong Jo
Jan F. M. Post
Rolando E. Rumbaut

Degrees offered: B.S.B., M.S., Ph.D.

Graduate and undergraduate programs in bioengineering offer concentrations in areas that include cellular and molecular engineering; bioinstrumentation, imaging, and optics; or biomaterials and biomechanics. Research areas include biochemical engineering, biological systems modeling, biomaterials, biomedical lasers, cellular and molecular engineering, controlled release technologies, metabolic engineering, spectroscopy, systems engineering and instrumentation, thrombosis, tissue engineering, and transport processes.

Undergraduate Program. The bioengineering undergraduate program will prepare students for careers in rapidly developing areas of biomedical engineering and bioprocesing. Our unified and comprehensive program leading to the B.S. degree in bioengineering will:
• Provide students with a fundamental understanding of the life and medical sciences
• Teach students to apply engineering principles in the life and medical sciences
• Develop their critical problem solving skills in bioengineering
• Develop their ability to communicate effectively and participate in interdisciplinary teams
• Expose students to a broad education that prepares them for diverse careers

Undergraduates in bioengineering will then have the training to pursue further education in graduate school or medical school or will have strong preparation for a career in the biotechnology industry.

The B.S.B. degree is organized around a core of required courses and a selection of elective courses from three specialization areas. The specialization electives provide a flexibility that can be used to create a focus in cellular and molecular engineering; bioinstrumentation, imaging, and optics; systems engineering and instrumentation; or biomaterials and biomechanics. Because of the number of options, students should consult early with departmental advisers to plan a program that meets their needs.

Degree Requirements for the B.S. Degree in Bioengineering

For general university requirements, see Graduation Requirements (pages 18–20). The curriculum for a B.S. degree in bioengineering requires 94 credit hours, which count toward the total of 134 hours required to graduate.

Preparation. Students considering a major in bioengineering should take as freshmen MATH 101 and 102 Single Variable Calculus I and II, CHEM 121 and 122 General Chemistry, PHYS 101 or 111 or PHYS 125 Mechanics, PHYS 102 or PHYS 112, or PHYS 126 Electricity and Magnetism, and CAAM 210 or CAAM 211 Introduction to Engineering Computation. Sophomore students should take MATH 211 and 212, CHEM 211, 212, 215, BIOS 201, and MECH 211. BIOE 252 Bioengineering Fundamentals should be taken in the first semester of the sophomore year. BIOE 322 and BIOE 324 Systems Physiology should be taken the second semester of the sophomore year.

Concentration Areas. Students in the B.S.B. program will choose courses from three specialization areas:
• Cellular and molecular engineering
• Bioinstrumentation, imaging, and optics
• Biomaterials and biomechanics

Students majoring in bioengineering must complete the following courses.

Core Courses
Bioengineering
BIOE 252 Bioengineering Fundamentals
BIOE 322 Systems Physiology
BIOE 324 Physiology Lab Module
BIOE 332 Thermodynamics
BIOE 342 Tissue Culture Laboratory
BIOE 372 Introductory Biomechanics/Biomaterials
BIOE 383 Biomedical Instrumentation
BIOE 420 Biosystems Transport and Reaction Processes
BIOE 441 Advanced Bioengineering Laboratory
BIOE 452 Bioengineering Design

Biosciences
BIOS 201 Introductory Biology
BIOS 301 Biochemistry
BIOS 311 or 312 (1 hour) Laboratory Module
BIOS 341 Cell Biology

Computational and Applied Mathematics
CAAM 210 or CAAM 211 Introduction to Engineering Computation
CAAM 335 or CAAM 336 Foundations of Applied Math

Degree Requirements for the M.S. and Ph.D. Degrees in Bioengineering

For general university requirements, see Graduate Degrees (pages 62-67).

M.S. Program. Candidates for the M.S. degree must:
• Complete at least 18 semester hours of foundation, supporting, and advanced courses with high standing
• Fulfill a teaching requirement
• Submit an original research thesis
• Defend the thesis in a public oral examination

Ph.D. Program. Candidates for the Ph.D. degree must:
• Complete at least 36 approved semester hours of foundation, supporting, and advanced courses, with high standing. With departmental approval, the course requirements may be reduced to not less than 22 hours for students already holding an M.S. degree.
• Fulfill a teaching requirement. After their first two semesters in residence, students may be asked to spend the equivalent of 6 to 10 hours per week for a total of three semesters on teaching assignments.

Please note that some of these courses may not be listed in the Courses of Instruction section of this publication. As these courses become available, they will be listed in the schedule of courses.

Specialization Areas

Four bioengineering-area elective courses, at least 2 of which must be at the senior level, will be required in one of the three areas:
• Cellular and molecular engineering
• Bioinstrumentation, imaging, and optics
• Biomaterials and biomechanics

The elective courses in these concentration areas will be announced in future course listings.

Graduate Program. The bioengineering graduate program at Rice educates its students so that they can directly interact with physicians and cell and molecular biologists, while still excelling in the quantitative capabilities so important for engineering applications.
• Pass the Ph.D. qualifying examinations. All Ph.D. students must pass the Ph.D. qualifying examinations usually given during the first year of study. The qualifying examinations are comprehensive tests on the knowledge acquired in the bioengineering foundation courses.
• Submit a thesis proposal. Ph.D. students must submit and successfully defend their thesis proposals by the end of their fifth semester in residence.
• Complete a three to six month industrial internship. This requirement may be waived for those with adequate previous industrial experience.
• Submit a thesis that provides evidence of their ability to carry out original research in a specialized area of bioengineering.
• Defend the thesis in a public oral examination.

Graduate students take required courses and electives in the following areas:
• Cellular and molecular engineering
• Bioinstrumentation, imaging, and optics
• Biomaterials and biomechanics

See BIOE in the Courses of Instruction section.