Civil and Environmental Engineering

The George R. Brown School of Engineering

Chair
Joseph B. Hughes

Professors
Philip B. Bedient
Ahmad J. Durran
Arthur A. Few, Jr.
Joseph B. Hughes
Mason B. Tomson
Pol D. Spanos
Anestis S. Veletsos
Calvin H. Ward
Mark R. Wiesner

Professors Emeriti
Ronald P. Nordgren
John E. Merwin

Associate Professors
Panos Dakoulas
Satish Naragajaiah

Assistant Professors
Matthew P. Fraser
Michael Terk

Adjunct Professors
James B. Blackburn
Jean-Yves Bottero
Carroll Oubre

Adjunct Assistant Professor
Charles J. Newell

Lecturers
Milton Hanks
Moyeen Haque
Stergios Liapis
John E. Merwin
Pat H. Moore
James Mutha
John M. Sedlak
Ed Segner, III
Taufiq Sheikh
Christof Spieler

Degrees Offered: B.A., B.S.C.E., M.C.E., M.E.E., M.E.S., M.S., Ph.D.

Civil and Environmental Engineering (C&EE) is a broad and diverse field of study that offers students an education with several degree options. The most flexible degree options are at the bachelor’s level, where students can major in civil engineering or complete a double major with any other Rice University major. The double major has two tracks, one in environmental engineering sciences (EES), and the other in environmental sciences (ES). For students desiring an accredited professional degree, the B.S.C.E. is offered with sub-specialization in one of three areas of concentration: structural engineering, environmental engineering, or engineering management. Three nonthesis graduate degrees (M.C.E., M.E.E., and M.E.S) are available to students who desire additional education and specialization in civil engineering, environmental engineering, or environmental sciences. Joint M.B.A./Master of Engineering degrees are also available in conjunction with the Jesse H. Jones Graduate School of Management.

Students admitted for graduate study leading to M.S. or Ph.D. degrees must complete a rigorous course of study that combines advanced course work with scholarly research culminating in the public defense of a written thesis. Graduate research is carried out in a range of areas reflecting the interests of the department’s faculty. Examples include structural engineering and mechanics, earthquake engineering, geotechnical engineering, computer-aided design, hydrology, water resources and water quality engineering, air pollution and its control, and hazardous waste treatment.

Degree Requirements for B.S.C.E. in Civil Engineering

The B.S.C.E. degree is a professional degree accredited by the Accreditation Board for Engineering and Technology (ABET). Students in the B.S. program may choose among the three specialization options as follows:

- structural engineering
- environmental engineering
- engineering management

For the B.S.C.E. degree, students must have a total of at least 134 semester hours at graduation, including the following required courses:

General Science (39 hours)
- MATH 101 Single Variable Calculus I
- MATH 102 Single Variable Calculus II
- CHEM 121 General Chemistry
- CHEM 122 General Chemistry
- PHYS 101 Mechanics with Laboratory
- PHYS 102 Electricity and Magnetism with Laboratory
- MATH 211 Ordinary Differential Equations and Linear Algebra
- MATH 212 Multivariable Calculus
- CAAM 210 or CAAM 211 Introduction to Engineering Computation
- STAT 310 Probability and Statistics
- CAAM 335 Matrix Analysis—or equivalent

1 of the following:
- CHEM 211 Organic Chemistry
- PHYS 210 Waves and Optics
- BIOS 201 Introductory Biology

Core Engineering (41 hours)
- CIVI 211 Engineering Mechanics
- CIVI 300 Mechanics of Solids I
- CIVI 302 Strength of Materials Laboratory
- CIVI 304 Structural Analysis I
- CIVI 306 Steel Design
- CIVI 363 Applied Fluid Mechanics
- ENV 403 Principles of Environmental Engineering
- CIVI 403 Reinforced Concrete Design
- CIVI 404 Reinforced Concrete Laboratory
- ENVI 412 Hydrology and Watershed Analysis
- CIVI 451 Introduction to Transportation
- CIVI 470 Basic Soil Mechanics
- CIVI 480 Senior Design Project
- CIVI 479 Introduction to Project Development
- ENV 512 Hydrology Design Laboratory

Specialization Option: 12 hours
- MSCI 301 Materials Science
- MSCI 302 Mechanical Behavior of Materials
- MSCI 303 Properties of Materials
- MSCI 304 Materials Processing
- MSCI 305 Advanced Engineering Materials
- MSCI 306 Advanced Materials Science
- MSCI 307 Advanced Materials Processing
- MSCI 308 Advanced Materials Characterization
- MSCI 309 Advanced Materials Applications
- MSCI 310 Advanced Materials Design

Recommended Electives: (12 hours)
- ENGI 302 Ethical Decision-making for Engineers
- ENGI 321 The Professional Engineer: Roles and Responsibilities
- CIVI 201 Civil Engineers and the World We Build
- CIVI 251 Plane Surveying
- See Civil Engineering website for a complete list.

Required Courses:
- Civil and Environmental Engineering
- Structural Engineering Option:
- General Science (39 hours)
- Core Engineering (41 hours)
- Specialization Option: 12 hours
- Recommended Electives: (12 hours)

University Distribution:
- Required Courses: 80 hours
- Specialization Option: 12 hours
- Free Electives: 18 hours
- University Distribution: 24 hours
- B.S. Civil Engineering Requirement: 134 hours
Degree Requirements for B.A. in Civil Engineering

For general university requirements, see Graduation Requirements (pages 18–20). For the B.A. degree, students majoring in civil engineering must have a total of at least 120 semester hours at graduation. The B.A. is not accredited as a professional degree; detailed requirements are available from the department office.

Degree Requirements for B.A. in Environmental Science and Engineering

(as a double major)

The Department of Civil and Environmental Engineering offers the B.A. as a double major with any other major at Rice University. The double major has two tracks, one in environmental engineering sciences (EES), and one in environmental sciences (ES). Faculty from the Wiess School of Natural Sciences work with C&EE faculty in offering courses, advising, and administering the ES track of this double major. The double major is designed to accommodate:

- Students wishing to obtain a solid preparation for later graduate study in environmental engineering, environmental science, or other careers as environmental professionals (e.g., environmental economics or environmental law), and
- Students pursuing nonenvironmental careers (e.g., historians, lawyers, mechanical engineers, chemists) who will nonetheless benefit from a knowledge of the environmental dimensions of problems and issues they will confront.

The 68-semester-hour (minimum) double major in environmental science and engineering may be taken in conjunction with any stand-alone major offered in any school of the university. The EES track is highly recommended for students wishing to pursue graduate study in environmental engineering. Students wishing to obtain an ABET-accredited degree in engineering should pursue the environmental specialization within the B.S.C.E. or through a similar offering provided by the Department of Chemical Engineering. Students choosing the ES track are encouraged to select one of the following participating faculty members from the Wiess School of Natural Sciences as their adviser:

- John Anderson (Earth Science)
- Andre Drozler (Earth Science)
- Arthur Few (Physics and Astronomy and Environmental Science)
- F. M. Fisher (Ecology and Evolutionary Biology)
- P. A. Harcombe (Ecology and Evolutionary Biology)
- William Leeman (Earth Science)
- D. Queller (Ecology and Evolutionary Biology)
- R. L. Sass (Ecology and Evolutionary Biology)
- Dale Sawyer (Earth Science)
- J. E. Strassmann (Ecology and Evolutionary Biology)
- A. Thornhill (Ecology and Evolutionary Biology)

Specific Course Requirements for a Double Major (B.A.) in Environmental Science and Engineering include:

<table>
<thead>
<tr>
<th>General Prerequisites</th>
<th>Core Courses: Environmental Sciences Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 121 or 151 General Chemistry with Laboratory</td>
<td>BIOS 325 Ecology</td>
</tr>
<tr>
<td>CHEM 122 or 152 General Chemistry with Laboratory</td>
<td>GEOL 326 Environmental Geology</td>
</tr>
<tr>
<td>MATH 101 Single Variable Calculus I</td>
<td>PHYS 443 Atmospheric Science (or ENV 411 Air Resource Management)</td>
</tr>
<tr>
<td>MATH 102 Single Variable Calculus II</td>
<td>2 of the following 3 courses:</td>
</tr>
<tr>
<td>PHYS 101 or 125 or 111 Mechanics</td>
<td></td>
</tr>
<tr>
<td>PHYS 102 or 126 or 112 Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>BIOS 201 Introductory Biology</td>
<td>ENV 401 Introduction to Environmental Chemistry</td>
</tr>
<tr>
<td>BIOS 202 Introductory Biology</td>
<td>ENV 412 Hydrology and Watershed Analysis</td>
</tr>
<tr>
<td>(Environmental sciences track only)</td>
<td>GEOL 451 Analysis of Environmental Data</td>
</tr>
</tbody>
</table>

I of the following 2 courses:
NSCI 230 Computation in Natural Science
(Environmental sciences track only)
MATH 211 Ordinary Differential Equations and Linear Algebra
(Environmental engineering sciences track only)

Sample Curriculum in the Environmental Engineering Sciences Track

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Fall</td>
</tr>
<tr>
<td>MATH 101 Single Variable Calculus I</td>
<td>MATH 211 Ordinary Differential Equations</td>
</tr>
<tr>
<td>PHYS 101 Mechanics</td>
<td>BIOS 201 Introductory Biology</td>
</tr>
<tr>
<td>CHEM 121 General Chemistry with Laboratory</td>
<td>Environmental Elective*</td>
</tr>
<tr>
<td>Electives</td>
<td>Environmental Elective</td>
</tr>
<tr>
<td>HPER 101</td>
<td>*ENV 201 Introduction to Environmental Systems recommended as environmental elective</td>
</tr>
<tr>
<td>Spring</td>
<td>Spring</td>
</tr>
<tr>
<td>MATH 102 Single Variable Calculus II</td>
<td>Environmental Elective</td>
</tr>
<tr>
<td>PHYS 102 Electricity and Magnetism</td>
<td>Environmental Elective</td>
</tr>
<tr>
<td>CHEM 122 General Chemistry with Laboratory</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td>HPER 102</td>
<td></td>
</tr>
</tbody>
</table>
Sample Curriculum in Environmental Sciences Track

Freshman Year

Fall
- MATH 101 Single Variable Calculus I
- PHYS 101 Mechanics
- CHEM 121 General Chemistry with Laboratory
- Electives
- HPER 101

Spring
- MATH 102 Single Variable Calculus II
- PHYS 102 Electricity and Magnetism
- CHEM 122 General Chemistry with Laboratory
- Electives
- HPER 102

Sophomore Year

Fall
- NSCI 230 Computation in the Natural Sciences
- BIOS 201 Introductory Biology
- Environmental Elective
- Environmental Elective

Spring
- BIOS 202 Introductory Biology
- Environmental Elective
- Environmental Elective

Junior Year

Fall
- BIOS 325 Ecology
- GEOL 326 Environmental Geology
- Environmental Elective

Spring
- PHYS 443 Atmospheric Science
- or ENVI 411 Air Resource Management
- Environmental Elective

Senior Year

Fall
- GEOL 451 Analysis of Environmental Data or ENVI 401 Introduction to Environmental Chemistry
- Environmental Elective
- Environmental Elective

Spring
- ENVI 412 Hydrology and Watershed Analysis
- Environmental Elective

24 semester hours of environmental electives are required, with at least 6 semester hours of course work from each of four categories. Consult the faculty adviser or Department of Environmental Science and Engineering for a list of approved electives.

Degree Requirements for M.C.E., M.E.E., M.E.S., M.S., and Ph.D.

Admission

Applicants pursuing graduate education in structural engineering, structural mechanics, and geotechnical engineering should have a B.S.C.E. with a significant emphasis on structural engineering, but students with other undergraduate degrees may apply if they have adequate preparation in mathematics, mechanics, and structural analysis and design. Courses such as engineering technology or construction technology, however, do not represent adequate preparation. Applicants for the M.E.E. and the M.E.S. must have a B.S. or B.A. in related areas of science and engineering. Successful applicants typically have at least a 3.00 (B) grade point average in undergraduate work and high Graduate Record Examination (GRE) scores. For general university requirements, see Graduate Degrees (pages 62–67) and Admission to Graduate Study (pages 67–68).

M.C.E. Program

The Master of Civil Engineering (M.C.E.) is a professional nonthesis degree requiring 30 hours of study. Students with a B.S. in Civil Engineering are eligible to apply. Areas of study include structural dynamics, offshore technology, reinforced concrete and prestressed concrete, reliability of systems, random vibrations, soil dynamics, soil-structure interaction, and structural control. For general university requirements, see Graduate Degrees (pages 62–67). To earn a M.C.E. degree, students must:

- Complete 30 semester hours of approved courses
- Complete 24 semester hours of civil engineering courses
- Complete 52 semester hours of business administration courses

M.B.A./M.C.E. Program

For general university requirements, see Graduate Degrees (pages 62–67). See also Accounting and Management. To earn a M.B.A./M.C.E. degree, students must:

- Complete 30 semester hours of approved courses
- Complete 24 semester hours of civil engineering courses
- Complete 52 semester hours of business administration courses

M.E.E. Program

The Master of Environmental Engineering (M.E.E.) is a professional nonthesis degree requiring 30 hours of study. Students who have a B.S. degree in any field of engineering may apply. Areas of study include hydrology and water resources engineering, water treatment, water chemistry, air pollution and its control, and hazardous waste treatment. Although the program is open to all qualified applicants, candidates usually are completing undergraduate programs in environmental engineering and wish to extend their education into a fifth year of specialized study.

M.E.S. Program

The Master of Environmental Science (M.E.S.) is a professional nonthesis degree requiring 30 hours of study. To enter the M.E.S. program, applicants must have a B.A. or B.S. degree in any of the natural or physical sciences. Areas of study include hydrology and water resources engineering, water treatment, water chemistry, air pollution and its control, and hazardous waste treatment. Although the program is open to all qualified applicants, candidates typically are completing undergraduate programs in environmental science and wish to extend their education into a fifth year of specialized study.

M.S. Program

The Master of Science degree is offered in both Civil Engineering and Environmental Engineering. For general university requirements, see Graduate Degrees (pages 62–67). To earn a M.S. degree, students must:

- Complete at least 24 semester hours of approved courses. For students studying Environmental Engineering this must include one course each in environmental chemistry, water treatment, hydrology, and air quality (comparable course work completed previously may be substituted for the core courses)
Select a thesis committee according to department requirements and conduct original research in consultation with the committee.

Present and defend in oral examination an approved research thesis.

Students take the oral exam only after the committee determines the thesis to be in an acceptable written format for public defense. Normally, students take two academic years and the intervening summer to complete the degree.

Students intending to extend their studies into the Ph.D. degree program should note that the department does not grant an automatic M.S. degree to candidates who have not written a satisfactory master’s thesis.

Ph.D. Program in Civil Engineering. For general university requirements, see Graduate Degrees (pages 62–67). To earn a Ph.D. degree in Civil Engineering, students must:

- Complete at least 48 semester hours of approved courses with high standing
- Pass a comprehensive preliminary examination testing the candidate’s knowledge of the field and ability to think in a creative manner
- Pass an oral qualifying examination on the proposed thesis research and related topics
- Complete a thesis that constitutes an original contribution to knowledge
- Pass a final public oral examination on the thesis and related topics

Ph.D. Program in Environmental Engineering. To earn a Ph.D. degree in environmental engineering sciences, candidates must successfully accomplish the following (spending at least four semesters in full-time study at Rice):

- Complete 90 semester hours of approved course work with high standing
- Pass a preliminary written examination on the field of environmental engineering sciences
- Pass a qualifying examination on course work, proposed research, and related topics
- Complete a dissertation indicating an ability to do original and scholarly research
- Pass a formal public oral examination on the thesis and related topics

Ph.D. candidates in environmental engineering sciences take the preliminary exam, administered by department faculty, after two semesters of course work. Candidates who pass this exam then form a doctoral committee according to department requirements. The qualifying examination administered by the doctoral committee after candidates develop a research proposal evaluates their preparation for the proposed research and identifies any areas requiring additional course work or study.

See CIVI and ENVI in the Courses of Instruction section.