The cognitive sciences provide a multidisciplinary study of the mind. Researchers in this field seek to understand such mental phenomena as perception, thought, memory, the acquisition and use of language, learning, concept formation, and consciousness. Research projects in the cognitive sciences may involve observing the development of mental skills in children, programming computers to engage in complex problem solving, or analyzing the nature of meaning. Methods include observation and analysis, model building, experimentation, and the computer simulation of mental structures and processes. Some investigators focus on relations between brain structures and behavior, some work with computer simulation, and others work at more abstract philosophical levels.

Degree Requirements for B.A. in Cognitive Science

For general university requirements, see Graduation Requirements (pages 20–23). Students majoring in cognitive sciences must complete 7 core courses and 5 additional courses (see below). Among the 5 additional courses, at least 3 and no more than 4 must be in a single area of concentration—linguistics, philosophy, psychology, or neuroscience.

Introductory Courses

Because the major is interdisciplinary, no single course introduces the full range of the subject. However, students who are interested in majoring in cognitive sciences should take one or more of the following courses during their first and second years: LING 200, PHIL 103, PSYC 101, or PSYC 203.
Honors Program

Students with a 3.5 GPA in cognitive sciences and 3.3 overall GPA may apply for the cognitive sciences honors program. Students in the honors program are expected to conduct an independent research project of either one or two semesters under the guidance of a member of the cognitive sciences faculty. Students who wish to enter this program should consult with prospective advisors during their junior year and submit a proposal by the end of the semester preceding the initiation of the project. Typically, this means submitting a proposal by the end of the junior year and beginning the project during the fall of the senior year. Proposals will be reviewed by both the supervisor and the program director. Students who undertake a two-semester project will be allowed to continue into the second semester only if their advisor judges that sufficient progress has been made during the first semester. At the end of a project, honors students are expected to submit a detailed final report to both their advisor and the program director and make an oral presentation. For more details, contact the program director.

Core Courses

The core courses are divided into seven groups. Majors must take one course from each group.

Computer Science
COMP 200 Elements of Computer Science
COMP 210 Introduction to Principles of Scientific Computation

Psychology
PSYC 203 Introduction to Cognitive Psychology

Linguistics
LING 200 Introduction to the Scientific Study of Language
LING 300 Linguistic Analysis

Advanced Linguistics
LING 306 Language and the Mind
LING 315 Semantics

Philosophy
PHIL 103 Philosophical Aspects of Cognitive Science
PHIL 312 Mathematical Logic
PHIL 305 Philosophy of Mind

Advanced Psychology
PSYC 351 Psychology of Perception
PSYC 362 Biopsychology

Miscellaneous
COMP 440 Artificial Intelligence
LING 317 Language and Computers
PSYC 430 Computational Modeling of Cognitive Processes (formerly cross-listed as CSCI 410)
PSYC 352 Formal Foundations of Cognitive Sciences

Additional Courses

Note: you may not use a single course to satisfy both a core course requirement and an additional course requirement.

Cognitive Sciences
CSCI 390 Supervised Research in Cognitive Science
CSCI 481 Honors Project
CSCI 482 Honors Project

Computer Science
COMP 200 Elements of Computer Science
COMP 210 Introduction to Principles of Scientific Computation
COMP 212 Intermediate Programming
COMP 440 Artificial Intelligence
COMP 450 Algorithmic Robotics
Linguistics
LING 200 Introduction to the Scientific Study of Language
LING 300 Linguistic Analysis
LING 301 Phonetics
LING 306 Language and the Mind
LING 311 Phonology
LING 315 Semantics
LING 317 Language and Computers
LING 402 Syntax and Computers
LING 403 Modern Linguistic Theory
LING 411 Neurolinguistics
LING 412 Language and Intelligence
LING 467 Computational Projects
LING 490 Discourse Analysis

Neuroscience
Many of the neuroscience courses are taught by Baylor College of Medicine faculty. For more information, see http://www.ruf.rice.edu/~neurosci/.

BIOS 421 Neurobiology
ELEC 481 Fundamentals of Systems Physiology and Biophysics
LING 411 Neurolinguistics
PSYC 362 Biopsychology
PSYC 432 Brain and Behavior (formally cross-listed as CSCI 420)
NEUR 500 Functional Neuroanatomy and Systems Neuroscience
NEUR 501 Cognitive Neuroscience I
NEUR 502 Cognitive Neuroscience II
NEUR 503 Molecular Neuroscience I and II
NEUR 504 Cellular Neurophysiology I and II
NEUR 505 Optical Imaging in Neuroscience
NEUR 506 Learning and Memory
NEUR 511 Integrative Neuroscience Core Course (first semester)

Philosophy
PHIL 103 Philosophical Aspects of Cognitive Science
PHIL 303 Theory of Knowledge
PHIL 305 Mathematical Logic
PHIL 312 Philosophy of Mind
PHIL 353 Philosophy of Language
PHIL 357 Incompleteness, Undecidability, and Computability

Psychology
PSYC 308 Memory
PSYC 309 Psychology of Language
PSYC 340 Research Methods
PSYC 351 Psychology of Perception
PSYC 352 Formal Foundations of Cognitive Science
PSYC 360 Thinking
PSYC 362 Biopsychology
PSYC 370 Introduction to Human Factors
PSYC 409 Methods in Human-Computer Interaction
PSYC 411 History of Psychology
PSYC 430 Computational Modeling of Cognitive Processes
PSYC 432 Brain and Behavior (formally cross-listed as CSCI 420)
PSYC 441 Human-Computer Interaction
PSYC 465 Olfactory Perception

Other Departments
ANTH 406 Cognitive Studies in Anthropology and Linguistics
ELEC 201 An Introduction to Engineering Design
ELEC 498 Introduction to Robotics
STAT 300 Model Building

See CSCI in the Courses of Instruction Section.