MECHANICAL ENGINEERING AND MATERIALS SCIENCE

THE GEORGE R. BROWN SCHOOL OF ENGINEERING

Chair
Enrique V. Barrera

Professors
John E. Akin
Andrew R. Barron
Yildiz Bayazitoglu
Michael M. Carroll
Rex B. McLellan
Andrew J. Meade
Pol D. Spanos
Tayfun E. Tezduyar
James Tour

Professors Emeriti
Franz R. Brotzen
Alan J. Chapman
Angelo Miele
Ronald P. Nordgren
Chao-Cheng Wang

Associate Professors
Fathi Ghorbel
Satish Nagarajaiah
Boris I. Yakobson

Assistant Professors
Chad M. Landis
Marcia E. O’Malley

Adjunct Professors
John J. Bertin
Thomas J.R. Hughes

Adjunct Associate Professors
Aladin Boriek
Keith Stein

Adjunct Assistant Professors
Sarmed Adnan
Nazareth S. Bedrossian
James B. Dabney

Visiting Assistant Professors
Catherine G. Ambrose

Lecturers
Robert Cunningham
David M. McStravick

Degrees Offered: BA, BSME, BSMS, MME, MMS, MS, PhD

Studies in mechanical engineering may lead to specialization in one of several areas, including mechanics, computational mechanics, stochastic mechanics, fluid dynamics, heat transfer, dynamics and control, robotics, biomedical systems, and aerospace sciences. Studies in materials science may lead to specialization in one of several areas, including nanotechnology, metals physics, statistical mechanics, metallic solid thermodynamics, materials chemistry, aspects of composites, coatings and thin films, and interface science.

The graduate program offers professional degrees in both materials science and engineering, which is based on undergraduate preparation in a number of related fields, and mechanical engineering, which permits specialization in the areas mentioned in the previous paragraph. Graduate students may also pursue research degrees. Faculty research areas are indicated in the previous paragraph. A joint MBA/Master of Engineering degree is available in conjunction with the Jesse H. Jones Graduate School of Management. Also, a combined MD and advanced research degree for research careers in medicine is available with Baylor College of Medicine.

The graduate program collaborates with other departments in its comprehensive educational and research activities. The Department of Computational and Applied Mathematics supports research in applied analysis and computational mathematics.
Work on expert systems and robotics is done in cooperation with the Departments of Electrical and Computer Engineering and Computer Science. Computer graphics research involves the cooperation of the Department of Computer Science and the School of Architecture. The campus-wide Rice Quantum Institute is also active in the research of electronic materials and other aspects of materials science. Finally, biomechanics and biomaterials research involves several institutions in the Texas Medical Center.

Degree Requirements for BA, BSME in Mechanical Engineering or BA, BSMS in Materials Science and Engineering

For general university requirements, see Graduation Requirements (pages 14–15). The BA program in either mechanical engineering or materials science and engineering is highly flexible, involves less technical content than the BS, and allows students greater freedom to pursue areas of interest outside of engineering.

The two BS programs prepare students for professional practice of engineering. During their senior year, mechanical engineering students in the BS program take courses in design application while completing a major design project, and materials science and engineering students in the BS program work on a design problem in an industrial setting. The BSME program is accredited by the Accreditation Board for Engineering and Technology (ABET). Departmental goals and objectives are available at http://mems.rice.edu/undergraduate/goals.html.

BSME Program—Lists of representative undergraduate courses and the usual order in which students take them are available from the department for either the BA or BS programs in both mechanical engineering and materials science and engineering. The BSME degree contains a core of required courses and selected electives from 1 of 6 specialization areas. The requirements (for a total of 131 hours) are:

Basic Mathematics and Science (26 hours)
- CHEM 121 Chemistry
- MATH 101 Single Variable Calculus I
- MATH 102 Single Variable Calculus II
- MATH 211 Ordinary Differential Equations and Linear Algebra
- MATH 212 Multivariable Calculus
- MSCI 301 Materials Science
- PHYS 101 Mechanics
- PHYS 102 Electricity and Magnetism

Computational and Applied Mathematics (12 hours)
- COMP 110 Computation in Science and Engineering
- CAAM 210 Engineering Computation
- CAAM 335 Matrix Analysis
- CAAM 336 Differential Equations in Science and Engineering

Senior Design (7 hours)
- MECH 407 Mechanical Design Project I
- MECH 408 Mechanical Design Project II

Labs (3 hours)
- MECH 331 Mechanics Lab
- MECH 332 Thermo/Fluids Lab
- MECH 431 Senior Lab

Mechanical Engineering (32 hours)
- MECH 200 Classical Thermodynamics
- MECH 211 Engineering Mechanics
- MECH 311 Mechanics-Deformable Solids
- MECH 340 Industrial Process Lab
- MECH 343 Modeling of Dynamic Systems
- MECH 371 Fluid Mechanics I
- MECH 401 Machine Design
- MECH 412 Vibrations
- MECH 420 Feedback Control of Dynamic Systems
- MECH 481 Heat Transfer

Limited Electives: 3 hours in any 300-level or higher MATH, CAAM, STAT, or MECH course

Distribution Electives (24 hours)

Free Electives (15 hours)
Specialization Area Options—The specialization area can be 1 of the following 5 clusters. Students must take at least 2 of the following required cluster courses for their selected cluster and 2 from the departmental list of the suggested cluster elective courses, for a total of not less than 12 hours. The cluster advisors will maintain updated lists of electives in the department. The choices for the required cluster courses are:

1. Biomechanics
 - BIOE 372 Intro Biomechanics
 - MECH 380 Tissue Mechanics

2. Computational mechanics
 - MECH 417 Finite Element Analysis
 - MECH 454 Finite Elements in Fluids

3. Fluid mechanics and thermal science
 - MECH 372 Fluid Mechanics, II
 - MECH 471 App. of Thermodynamics

4. Solid Mechanics and Materials
 - CEVE 400 Mechanics of Solids II
 - MSC1 402 Mech. Properties of Materials

5. System dynamics and control
 - MECH 498 Intro to Robotics
 - MECH 435 Electromechanical Systems or ELEC 243 Intro to Electronics

6. General mechanical engineering
 - Any 4 required courses listed above may be taken to define a general cluster.

BA in Mechanical Engineering Program—Students seeking the BA degree with a major in mechanical engineering must complete 120 hours with at least 66 semester hours in courses specified by the department along with 24 hours of university distribution electives and 30 hours of free electives. Lists of courses, including general university requirements and the usual order in which students take them are available from the department. The BA program mirrors the BSME program in the freshman and sophomore years with the exceptions that MECH 340 and MECH 331 are not required. Specific major requirements are completed in the junior and senior years along with electives. A summary appears below:

Freshman Year
Same as BS with 23 major and 9 elective hours for 32 hours.

Sophomore Year
Same as BS (except MECH 340 and 331 are not required) with 18 major and 15 elective hours for 33 hours.

Junior and Senior Years
25 major and 30 electives for 55 hours. The following courses are required in junior and senior years:

- CAAM 335 Matrix Analysis (3)
- CAAM 336 Differential Equations in Science and Engineering (3)
- MECH 343 Modeling of Dynamic Systems (4)
- MECH 371 Fluid Mechanics I (3)
- MECH 401 Machine Design (3)
- MECH 412 Vibrations (3)
- MECH 420 Feedback Control of Dynamic Systems (3)
- MECH 481 Heat Transfer (3)

BA in Materials Science and Engineering Program—Students seeking the BA degree with a major in materials science and engineering must complete at least 52 hours in courses specified by the department plus additional hours for a total of 120 hours at graduation.

BSMS Program—Students seeking the BSMS must complete at least 91 semester hours in courses specified by the department within the total requirements of 134 hours. Basic departmental course requirements for the BSMS are as follows:
CHEM 121–122 General Chemistry
MATH 101 and 102 Single Variable Calculus I and II
MATH 211 Ordinary Differential Equations and Linear Algebra
MATH 212 Multivariable Calculus
MECH 211 Engineering Mechanics
MSCI 301 Materials Science
PHYS 101 Mechanics
PHYS 102 Electricity and Magnetism

Specific requirements
CAAM 210 Introduction to Engineering Computation
CAAM 335 Matrix Analysis
CEVE 300 Mechanics of Solids
ELEC 241 Fundamentals of Electrical Engineering I (or ELEC 243 Introduction to Electronics)
MSCI 301 Materials Science
MSCI 303 Materials Science Junior Lab
MSCI 311 Introduction to Design
MSCI 401 Thermodynamics and Transport Phenomena in Materials Science
MSCI 402 Mechanical Properties of Materials
MSCI 404 Materials Engineering and Design
MSCI 406 Physical Properties of Solids (or MSCI 415 Ceramics and Glasses)
MSCI 411 Metallography and Phase Relations (or MSCI 415 Ceramics and Glasses)
MSCI 500/501 Materials Science Seminar
MSCI 535 Crystallography and Diffraction
MSCI 537 Materials Science Senior Lab
MSCI 594 Properties of Polymers

1 course from the following
PHYS 201 Waves and Optics
CHEM 211 Organic Chemistry
CHEM 311 Physical Chemistry

Electives
1 approved science elective (at the 200 level or higher)
1 approved engineering science elective (not MSCI)
1 approved technical elective

Degree Requirements for MME, MMS, MS, and PhD in Mechanical Engineering or Materials Science and Engineering

Professional Degree Programs—The professional degrees offered by this department, the Master of Mechanical Engineering (MME) and the Master of Materials Science (MMS), involve a fifth year of specialized study, which is integrated with the four undergraduate years leading to either the BA or the BS degree in the same areas of interest. The professional degree programs are open to students who have shown academic excellence in their undergraduate studies.

For general university requirements, see Graduate Degrees (pages 57–58). For both the MME and MMS degrees, students must complete 30 semester hours of course work. Lists of suggested courses are available from the department. Students should develop a specific plan of study based on their particular interests.

Research Degree Programs—The programs leading to the MS and PhD degrees are open to students who have demonstrated outstanding performance in their undergraduate studies. The granting of a graduate research degree presupposes academic work of superior quality and a demonstrated ability to do original research.

For general university requirements, see Graduate Degrees (pages 57–58). Course requirements for the research degrees vary, depending on the extent of individual undergraduate preparation as well as each student’s performance in graduate courses and on qualifying examinations. For both the MS and PhD degrees, students must present a thesis that comprises an original contribution to knowledge and defend it in a public oral examination.

See MECH and MSCI in the Courses of Instruction section.