Degrees Offered: BA, BS, MST, MS, PhD

The Department of Physics and Astronomy offers undergraduate and graduate programs for a wide range of interests. The bachelor of arts degrees in physics and in astronomy are suitable for students who wish to obtain a broad liberal education with a concentration in physical science. The bachelor of science degrees in physics, in astrophysics, and in chemical physics provide preparation for employment or further study in physics and related fields. Students in the professional non-thesis, MST program obtain training in science teaching. Research facilities and thesis supervision are available for MS and PhD students in atomic, molecular, and optical
physics; biophysics; condensed matter and surface physics; earth systems science; nuclear and particle physics; observational astronomy; solar system physics; space plasma physics; and theoretical physics and astrophysics.

Undergraduate Degree Requirements

For general university requirements, see Graduation Requirements (pages 14–15). Major requirements consist of a common core of basic physics and mathematics courses, with additional course work specific to each degree program. Students may obtain credit for some courses by advanced placement, and the department’s Undergraduate Committee can modify requirements to meet the needs of students with special backgrounds.

All physics majors must complete the following courses:

- PHYS 101 or 111 *Mechanics (with Lab)*
- PHYS 102 or 112 *Electricity and Magnetism (with Lab)*
- PHYS 201 *Waves and Optics*
- PHYS 202 *Modern Physics*

Additional courses for the BS degree in physics:

- PHYS 302 *Intermediate Electrodynamics*
- PHYS 311/312 *Introduction to Quantum Physics I and II*
- PHYS 331/332 *Junior Physics Laboratory I and II*
- PHYS 411 *Introduction to Nuclear and Particle Physics*
- PHYS 412 *Solid-state Physics*
- PHYS 425 *Statistical and Thermal Physics*
- PHYS 491/492 *Undergraduate Research*

Additional courses for the BS degree in physics with option in applied physics:

- PHYS 302 *Intermediate Electrodynamics*
or ELEC 306 *Electromagnetic Fields and Devices*
- PHYS 311 *Introduction to Quantum Physics I*
- PHYS 312 *Introduction to Quantum Physics II*
or ELEC 361 *Electronic Materials and Quantum Devices*
- 2 of: PHYS 331/332 *Junior Physics Laboratory I and II*, ELEC 327 *Digital Logic Design Laboratory*, ELEC 342 *Electronic Circuits*, and ELEC 465 *Physical Electronics Practicum*
- PHYS 412 *Solid-state Physics*
or Approved substitute in applied physics
- PHYS 425 *Statistical and Thermal Physics*

Required Courses: physics and mathematics

- PHYS 301 *Intermediate Mechanics*
- MATH 101/102 *Single Variable Calculus I and II*
- MATH 211 *Ordinary Differential Equations and Linear Algebra*
- MATH 212 *Multivariable Calculus*

*(MATH 221/222 *Honors Calculus III and IV* may substitute for MATH 211/ MATH 212)*

Additional Courses:

- PHYS 231 *Elementary Physics Laboratory II*
Additional courses for the BS degree in physics with option in biophysics:
PHYS 302 Intermediate Electrodynamics
PHYS 311/312 Introduction to Quantum Physics I and II
PHYS 425 Statistical and Thermal Physics
BIOS 201/202 Introductory Biology

BIOS 301 Biochemistry
CHEM 121/122 General Chemistry with Laboratory
or CHEM 151/152 Honors Chemistry with Laboratory
CHEM 211/212 Organic Chemistry
CHEM 215 Organic Chemistry Laboratory

or CAAM 335 Matrix Analysis and CAAM 336 Differential Equations in Science and Engineering
CAAM 210 Introduction to Engineering Computation
CAAM 353 Computational Numerical Analysis
CAAM 420 Computational Science I
1 of: CAAM 452 Numerical Methods for Partial Differential Equations, CAAM 453 Numerical Analysis, CAAM 520 Computational Science II
CHEM 121 General Chemistry with Laboratory
or CHEM 151 Honors Chemistry with Laboratory

Additional courses for BS degree in physics with option in computational physics:
PHYS 302 Intermediate Electrodynamics
PHYS 311/312 Introduction to Quantum Physics I and II
PHYS 416 Computational Physics
PHYS 425 Statistical and Thermal Physics
PHYS 491/492 Undergraduate Research
PHYS 493/494 Undergraduate Research Seminar
(The Undergraduate Research course and seminar must be taken concurrently.)
MATH 381 Introduction to Partial Differential Equations and MATH 382 Complex Analysis

PHYS 312 Introduction to Quantum Physics II
PHYS 480 Introduction to Plasma Physics
PHYS 491/492 Undergraduate Research
PHYS 493/494 Undergraduate Research Seminar
(The Undergraduate Research course and seminar must be taken concurrently.)
NSCI 230 Computation in Natural Science or CAAM 210 Introduction to Engineering Computation
CAAM 336 Differential Equations in Science and Engineering
CHEM 121 General Chemistry with Laboratory

Additional courses for the BS degree in astrophysics:
PHYS 302 Intermediate Electrodynamics
PHYS 311 Introduction to Quantum Physics I
PHYS 425 Statistical and Thermal Physics
ASTR 230 Astronomy Laboratory
ASTR 350/360 Introduction to Astrophysics—Stars, Galaxies, and Cosmology
3 courses from:
ASTR 450 Experimental Space Science
ASTR 451 Solar and Stellar Astrophysics
ASTR 452 Galaxies and Cosmology
ASTR 470 Solar System Physics

PHYS 312 Introduction to Quantum Physics II
PHYS 480 Introduction to Plasma Physics
PHYS 491/492 Undergraduate Research
PHYS 493/494 Undergraduate Research Seminar
(The Undergraduate Research course and seminar must be taken concurrently.)
NSCI 230 Computation in Natural Science or CAAM 210 Introduction to Engineering Computation
CAAM 336 Differential Equations in Science and Engineering
CHEM 121 General Chemistry with Laboratory

Additional courses for the BA degree in physics:
PHYS 302 Intermediate Electrodynamics
PHYS 311 Introduction to Quantum Physics I
PHYS 331 Junior Physics Laboratory I
PHYS 425 Statistical and Thermal Physics

1 additional PHYS or ASTR course (3 credit hours) at 400 level
NSCI 230 Computation in Natural Science or CAAM 210 Introduction to Engineering Computation or 1 MATH or CAAM course (3 credit hours) at or above 300 level
Additional courses for the BA degree in astronomy:

- PHYS 331 *Junior Physics Laboratory I*
- or NSCI 230 *Computation in Natural Science*
- PHYS 425 *Statistical and Thermal Physics*
 or CHEM 311 *Physical Chemistry*
- ASTR 100 *Exploring the Cosmos*

Additional courses for the BS degree in chemical physics:

- CHEM 121/122 *General Chemistry* or
- CHEM 151/152 *Honors Chemistry with Laboratory*
- CHEM 211 *Organic Chemistry*
- CHEM 212 *Organic Chemistry*
 or CHEM 360 *Inorganic Chemistry*

6 credit hours from:

- CHEM 215 *Organic Chemistry Laboratory*,
 CHEM 351 or 352 *Introductory Module in Experimental Chemistry*, CHEM 373–391,
 CHEM 435 *Methods of Computational Quantum Chemistry*, and PHYS 331 or 332 *Junior Physics Laboratory I or II*;
 up to 2 hours of CHEM 491 *Research*

Requirements for Advanced Degrees

For general university requirements, see Graduate Degrees (pages 57–58). More detailed information on courses and requirements is available from the Department of Physics and Astronomy.

The master of science teaching requires 30 credit hours of approved course work.

The master of science is a research degree, normally undertaken as the first stage of doctoral study. The MS requires at least 30 credit hours of approved graduate-level studies, including a thesis performed under the direction of a departmental faculty member.

To be eligible for the PhD degree, graduate students must demonstrate to the department their ability to engage in advanced research. This is normally accomplished by successfully completing the work for the MS. Students must also complete 60 credit hours of approved graduate-level study at Rice and produce a research thesis under the direction of a departmental faculty member. At least two years of graduate study are required for the PhD.

See ASTR and PHYS in the Courses of Instruction section.