BIOENGINEERING

GEORGE R. BROWN SCHOOL OF ENGINEERING

CHAIR
Rebecca Richards-Kortum

PROFESSORS
Kyriacos Athanasiou
John Clark
Michael Deem
Ariel Fernandez
Fathi Ghorbel
Naomi Halas
Lydia Kavraki
Antonios Mikos
Ka-Yiu San
Frank Tittel
Jennifer West
Kyriacos Zygourakis

PROFESSOR EMERITUS
David Hellums

ASSOCIATE PROFESSORS
Bahman Anvari
Rebekah Drezek
Jianpeng Ma

ASSISTANT PROFESSORS
Michael Diehl
Jane Grande-Allen
Ramon Gonzalez
Jeffrey Hartgerink
Oleg Igoshin
Ching-Hwa Kiang
Michael Liebschner
Nikolaos Mantzaris
Robert Raphael
Junghae Suh
Tomasz Tkaczyk

EXECUTIVE DIRECTOR OF DEPARTMENTAL ADVANCEMENT
Veronique Tran

LECTURERS/DIRECTOR OF LABORATORY INSTRUCTION
Carolyn Nichol
Maria Oden
Ann Saterbak

ADJUNCT PROFESSORS
William G. Bornmann
William Brownell
Rena D’Souza
Mauro Ferrari
Michele Follen
Charles Fraser
Craig Hartley
Fazle Hussain
Gabriel Lopez-Berestein
Joel Moake
Peter Saggau
Eva Sevick-Muraca
Jacqueline Shank
Karen Storothy
Wayne Smith

ADJUNCT ASSOCIATE PROFESSORS
Aladin Boriek
David Chang
Jing-Fei Dong
Anne M. Gillenwater
Chun Li
Charles Patrick
Mark Wong
Eser Yuksel

ADJUNCT ASSISTANT PROFESSORS
Sharmila Anandasabapathy
James Bankson
Michael Beauchamp
Miguel Cruz
Mary Dickinson
Karen Hirschi
Anshu Mathur
John Oghalai
Rolando Rumbaut
Rajesh Uthamanthil

ADJUNCT LECTURERS
Dennison Brown
Kathryn Peek

Degrees offered: BSB, MBE, MS, PhD

Graduate programs in bioengineering offer concentrations in areas such as biomedical imaging and diagnostics, cellular and biomolecular engineering,
computational and theoretical bioengineering, drug delivery and biomaterials, supramolecular biophysics and bioengineering, and tissue engineering and biomechanics. Undergraduate programs in bioengineering offer concentrations in areas that include cellular and molecular engineering; bioinstrumentation, imaging, and optics; and biomaterials and biomechanics. Research areas include biomechanical engineering, biological systems modeling, bioinformatics, biomaterials, biomedical lasers, cellular and molecular engineering, controlled release technologies, metabolic engineering, spectroscopy, statistical mechanics, systems engineering and instrumentation, thrombosis, tissue engineering, and transport processes.

Undergraduate Program—The bioengineering undergraduate program will prepare students for careers in rapidly developing areas of biomedical engineering and bioprocessing. Our unified and comprehensive program leading to the BS degree in bioengineering will:

- Provide students with a fundamental understanding of mathematics and the natural, life, and medical sciences
- Teach students bioengineering principles and their applications in life and medical sciences
- Develop critical problem-solving skills in bioengineering
- Develop the ability to communicate effectively and participate in interdisciplinary teams
- Expose students to a broad education that prepares them for diverse careers

Undergraduates in bioengineering will have the training to pursue further education in graduate school or medical school and will have strong preparation for a career in the biotechnology industry.

The BSB degree is organized around a core of required courses and a selection of elective courses from 3 areas of specialization. The specialization electives provide a flexibility that can be used to create a focus in cellular and molecular engineering; bioinstrumentation, imaging, and optics; or biomaterials and biomechanics. Because of the number of options, students should consult early with departmental advisors to plan a program that meets their needs.

Degree Requirements for BS in Bioengineering

For general university requirements, see Graduation Requirements (pages 14–15). The curriculum for a BS degree in bioengineering requires 94 credit hours, which count toward the total of 134 hours required to graduate.

Preparation—As freshmen, students considering a major in bioengineering should take MATH 101 and 102, CHEM 121 and 122, PHYS 101 or PHYS 125, PHYS 102 or PHYS 126, and CAAM 210. Sophomore students should take MATH 211 and 212, CHEM 211, BIOS 201, ELEC 243 and MECH 211. BIOE 252 should be taken in the 1st semester of the sophomore year. BIOE 330, BIOE 320, and BIOE 322 should be taken the 2nd semester of the sophomore year.

Students majoring in bioengineering must complete the following courses.

Core Courses

Bioengineering

- BIOE 252 *Bioengineering Fundamentals*
- BIOE 320 *Systems Physiology Laboratory Module*
- BIOE 322 *Systems Physiology*
- BIOE 330 *Bioreaction Engineering*
Students must take advanced laboratory module in their specialization area: BIOE 442 or BIOE 443 for cellular and molecular engineering; BIOE 442 or 444 for biomaterials and biomechanics; and BIOE 445 for bioinstrumentation, imaging and optics. Students must take one other advanced laboratory module for a total of 2 of the 4 listed modules (BIOE 442, 443, 444, and 445).

Specialization Areas
Three specialization area elective courses, at least 2 of which must be at the senior level, will be required in 1 of the 3 areas:

- Cellular and molecular engineering
- Bioinstrumentation, imaging, and optics
- Biomaterials and biomechanics

The elective courses in these concentration areas will be announced in future course listings. All 3 specialization courses must be engineering courses.

Graduate Program—To train the next generation of leaders in bioengineering, we have built an innovative teaching program that transcends boundaries between bioengineering, basic science, and clinical medicine, integrating the academic, industrial, and societal perspectives.

Our hands-on approach to education is supported by a long standing tradition of cross-disciplinary research and education. The Rice bioengineering program is a comprehensive training program that provides student with:

- A fundamental understanding of the life and medical sciences
• Advanced analytical and engineering capabilities,
• Translational research that transfers biotechnical advances from bench to bedside

With this educational background, graduates will be well prepared to participate in independent or collaborative research and development endeavors in industry or academia.

Degree Requirements for MBE and MS and PhD in Bioengineering

For general university requirements, see Graduate Degrees (pages 57–58).

To make sure scores are available when admission decisions are made, applicants need to register to take the GRE and TOEFL as required before September for the year in which they are applying. Applicants should request transcripts and letters of recommendation before September, as well, to give senders time to get the material to Rice University by the December 31 deadline. The Graduate Admissions Committee begins its deliberations in late November. Application materials received after the December 31 deadline will not be considered. Once admitted, departmental policy requires full-time students to be registered for at least 12 credit hours each semester.

MBE Program—The master of bioengineering degree is intended for those having a BA or BS degree in an engineering or science discipline.

Candidates for the MBE degree must complete the following course work:

1. Curriculum must be approved by the Graduate Academic Affairs Committee of the bioengineering department. (This will be done on a case-by-case basis).

2. Total of 30 credit hours is required (courses must be above and beyond the requirement for the undergraduate degree) as follows:
 - At least 15 credit hours of the 30 must be taken as BIOE courses, including Fundamentals of Systems Physiology (BIOE 572)
 - Introduction to Partial Differential Equations (MATH 381) (3 hours)
 - 1 additional engineering course (3 hours)
 - 3 additional courses approved by the Graduate Academic Affairs Committee (9 hours)

In summary, the credit hours required are:

- 15 credit hours of BIOE courses
- 3 credit hours of MATH 381
- 3 credit hours of one additional engineering course
- 9 credit hours of additional courses approved by the Graduate Academic Affairs Committee
- 30 Total credit hours

MS Program—Candidates for the MS degree must:

- Complete at least 18 approved semester hours of foundation, supporting, and advanced courses while maintaining a grade point average of 3.0
- MS students must earn additional credits they need for graduation by registering for the master’s research course BIOE 600 during the terms they are engaged in research.
- Fulfill a teaching requirement
• Submit an original research thesis
• Defend the thesis in a public oral examination

PhD Program—Candidates for the PhD degree must:

• Complete at least 30 approved semester hours of foundation, supporting, and advanced courses with high standing. With departmental approval, the course requirements may be reduced to not less than 22 hours for students already holding an MS degree.
• Fulfill a teaching requirement. After their 1st semester in residence, students may be asked to spend the equivalent of 6 to 10 hours per week for a total of 3 semesters on teaching assignments.
• Submit a thesis proposal. PhD students must submit and successfully defend their thesis proposals by the end of their 4th semester in residence.
• Complete a 3- to 6-month internship. This requirement may be waived for those with adequate previous relevant experience.
• Submit a thesis that provides evidence of their ability to carry out original research in a specialized area of bioengineering.
• Defend the thesis in a public oral examination.

Graduate students take required courses and electives in the following areas:

• Molecular, cellular, and tissue engineering
• Imaging and optics
• Biomaterials, biomechanics, and tissue engineering
• Computational bioengineering

See BIOE in the Courses of Instruction section.