Degrees Offered: BA, BS, MST, MS, PhD

The Department of Physics and Astronomy offers undergraduate and graduate programs for a wide range of interests. The bachelor of arts degrees in physics and astronomy are suitable for students who wish to obtain a broad liberal education with a concentration in physical science. The bachelor of science degrees in physics, astrophysics, and chemical physics provide preparation for employment or further study in physics and related fields. Students in the professional nonthesis, MST program obtain training in science teaching.
Research facilities and thesis supervision are available for MS and PhD students in atomic, molecular, and optical physics; biophysics; condensed matter and surface physics; earth systems science; nuclear and particle physics; observational astronomy; solar system physics; space plasma physics; and theoretical physics and astrophysics.

Undergraduate Degrees
For general university requirements, see Graduation Requirements (Undergraduate Students section, pages 2–5). Major requirements consist of a common core of basic physics and mathematics courses, with additional course work specific to each degree program. Students may obtain credit for some courses by advanced placement, and the department’s undergraduate committee can modify requirements to meet the needs of students with special backgrounds.

Degree Requirements for BS in Physics

All options must complete
PHYS 101 or 111 Mechanics (with lab)
PHYS 102 or 112 Electricity and Magnetism (with lab)
PHYS 201 Waves and Optics
PHYS 202 Modern Physics
PHYS 231 Elementary Physics Laboratory II
PHYS 301 Intermediate Mechanics
PHYS 311 Introduction to Quantum Physics I
PHYS 425 Statistical and Thermal Physics
PHYS 491 and 492 Undergraduate Research
PHYS 493 and 494 Undergraduate Research Seminar
(The undergraduate research course and seminar must be taken concurrently.)
MATH 101 and 102 Single Variable Calculus I and II
MATH 211 Ordinary Differential Equations and Linear Algebra
MATH 212 Multivariable Calculus
(MATH 221 and 222 Honors Calculus III and IV may substitute for MATH 211 and 212)

Additional courses for the BS in physics with general physics option
PHYS 302 Intermediate Electrodynamics
PHYS 312 Introduction to Quantum Physics II
PHYS 331/332 Junior Physics Laboratory I and II
PHYS 411 Introduction to Nuclear and Particle Physics
PHYS 412 Solid State Physics

MATH 381 Introduction to Partial Differential Equations and MATH 382 Complex Analysis or CAAM 335 Matrix Analysis and CAAM 336 Differential Equations in Science and Engineering
CHEM 121 and 122 General Chemistry (with lab) or CHEM 151 and 152 Honors Chemistry (with lab)

Additional courses for the BS in physics with applied physics option
PHYS 302 Intermediate Electrodynamics or ELEC 306 Electromagnetic Fields and Devices
PHYS 312 Introduction to Quantum Physics II or ELEC 361 Quantum Mechanics for Engineers
Two of: PHYS 331/332 Junior Physics Laboratory I and II, ELEC 342 Electronic Circuits, and ELEC 465 Physical Electronics Practicum
PHYS 412 Solid State Physics or approved substitute in applied physics
ELEC 242 Fundamentals of Electrical Engineering II or ELEC 243 Introduction to Electronics
ELEC 305 Introduction to Physical Electronics
MATH 381 Introduction to Partial Differential Equations or CAAM 336 Differential Equations in Science and Engineering
CHEM 121 and 122 General Chemistry (with lab) or CHEM 151 and 152 Honors Chemistry (with lab)

Additional courses for the BS in physics with biological physics option
PHYS 302 Intermediate Electrodynamics
Degree requirements for BS in Astrophysics

PHYS 101 or 111 *Mechanics* (with lab)
PHYS 102 or 112 *Electricity and Magnetism* (with lab)
PHYS 201 *Waves and Optics*
PHYS 202 *Modern Physics*
PHYS 231 *Elementary Physics Laboratory II*
PHYS 301 *Intermediate Mechanics*
PHYS 302 *Intermediate Electrodynamics*
PHYS 311 *Introduction to Quantum Physics I*
PHYS 425 *Statistical and Thermal Physics*
PHYS 491 and PHYS 492 *Undergraduate Research*
PHYS 493 and PHYS 494 *Undergraduate Research Seminar* *(The undergraduate research course and seminar must be taken concurrently.)*
ASTR 230 *Astronomy Laboratory*
ASTR 350 and ASTR 360 *Introduction to Astrophysics*

PHYS 302 *Intermediate Electrodynamics*

Degree requirements for BA in Physics

PHYS 101 or 111 *Mechanics* (with lab)
PHYS 102 or 112 *Electricity and Magnetism* (with lab)
PHYS 201 *Waves and Optics*
PHYS 202 *Modern Physics*
PHYS 231 *Elementary Physics Laboratory II*
PHYS 301 *Intermediate Mechanics*

PHYS 302 *Intermediate Electrodynamics*
PHYS 311 *Introduction to Quantum Physics I*
PHYS 331 *Junior Physics Laboratory I*
PHYS 425 *Statistical and Thermal Physics*

One additional PHYS or ASTR course (3 credit hours) at 400 level
MATH 101 and 102 Single Variable Calculus I and II
MATH 211 Ordinary Differential Equations and Linear Algebra
MATH 212 Multivariable Calculus

Degree requirements for BA in Astronomy

PHYS 101 or 111 Mechanics (with lab)
PHYS 102 or 112 Electricity and Magnetism (with lab)
PHYS 201 Waves and Optics
PHYS 202 Modern Physics
PHYS 231 Elementary Physics Laboratory II
PHYS 301 Intermediate Mechanics
PHYS 302 Intermediate Electrodynamics
PHYS 425 Statistical and Thermal Physics or CHEM 310 Physical Chemistry
ASTR 230 Astronomy Laboratory
ASTR 350 and ASTR 360 Introduction to Astrophysics
Two credits of ASTR 400 Undergraduate Research Seminar

One of: ASTR 450 Experimental Space Science, ASTR 451 Solar and Stellar Astrophysics, ASTR 452 Galaxies and Cosmology, ASTR 470 Solar System Physics, PHYS 480 Introduction to Plasma Physics
MATH 101/102 Single Variable Calculus I and II
MATH 211 Ordinary Differential Equations and Linear Algebra
MATH 212 Multivariable Calculus

(MATH 221/222 Honors Calculus III and IV may substitute for MATH 211/212)
One of: PHYS 331 Junior Physics Laboratory I, NSCI 230 Computation in Natural Sciences, or CAAM 210 Introduction to Engineering Computation

Degree requirements for BS in Chemical Physics

PHYS 101 or 111 Mechanics (with lab)
PHYS 102 or 112 Electricity and Magnetism (with lab)
PHYS 201 Waves and Optics
PHYS 202 Modern Physics
PHYS 231 Elementary Physics Laboratory II
PHYS 301 Intermediate Mechanics
PHYS 302 Intermediate Electrodynamics
PHYS 311 Introduction to Quantum Physics I
CHEM 121/122 General Chemistry or CHEM 151/152 Honors Chemistry (with lab)
CHEM 211 Organic Chemistry or CHEM 251 Honors Organic Chemistry
CHEM 310 Physical Chemistry
CHEM 360 Inorganic Chemistry
PHYS 312 Introduction to Quantum Physics II, or CHEM 430 Quantum Chemistry

One of: CHEM 420 Classical and Statistical Thermodynamics, or PHYS 425 Statistical and Thermal Physics

Six credit hours from: CHEM 215 Organic Chemistry Laboratory, CHEM 351–353, CHEM 372–395 and PHYS 331 or 332 Junior Physics Laboratory I or II; up to two hours of CHEM 491 Research for Undergraduates or PHYS 491/492 Undergraduate Research may be counted toward this requirement.
MATH 101/102 Single Variable Calculus I and II
MATH 211 Ordinary Differential Equations and Linear Algebra
MATH 212 Multivariable Calculus

(MATH 221/222 Honors Calculus III and IV may substitute for MATH 211/212)
Six credit hours from MATH or CAAM courses at or above 300 level

Advanced Degrees

For general university requirements, see Graduate Degrees (Graduate Students section, pages 3–4). More detailed information on courses and requirements is available from the Department of Physics and Astronomy.

The master of science teaching requires 30 credit hours of approved course work.
The master of science is a research degree, normally undertaken as the first stage of doctoral study. The MS requires at least 30 credit hours of approved graduate-level studies, including a research project performed under the direction of a departmental faculty member. The student must defend the results of the project in a public oral examination and submit an original thesis to the Office of Graduate and Postdoctoral studies.

The nonthesis master of science is a research degree, normally undertaken as the first stage of doctoral study. The MS requires at least 30 credit hours of approved graduate-level studies, including a research project performed under the direction of a departmental faculty member. The student must defend the results of the project in a public oral examination and submit an article, with the student as principal author, to a peer-reviewed journal.

To be eligible for the PhD degree, graduate students must demonstrate to the department their ability to engage in advanced research. This normally is accomplished by successfully completing the work for the MS. Students also must complete 60 credit hours of approved graduate-level study at Rice and produce a research thesis under the direction of a departmental faculty member. At least two years of graduate study are required for the PhD.

See ASTR and PHYS in the Courses of Instruction section.