BIOSCIENCES

Biochemistry and Cell Biology

The Wiess School of Natural Sciences

Chair
Janet Braam

Professors
Bonnie Bartel
Kathleen Beckingham
George N. Bennett
Daniel D. Carson
Mary C. Farach-Carson
Richard H. Gomer
Michael C. Gustin
Seiichi P. T. Matsuda
Kathleen Shive Matthews
John S. Olson
Ronald J. Parry
Michael Stern
Charles R. Stewart

Professors Emeriti
James Wayne Campbell
Raymon M. Glantz
Jordan Konisky
Graham Palmer
James B. Walker

Associate Professors
James A. McNew
Edward P. Nikonowicz
Yousif Shamoo

Assistant Professors
Michael Covington
Mary Ellen Lane
Peter Lwigale
Kevin R. MacKenzie
Luay K. Nakhléh
Jonathan Silberg
Yizhi Jane Tao
Daniel Wagner
Weiwei Zhong

Distinguished Faculty Fellow
Quentin Gibson

Senior Faculty Fellow
Marian Fabian

Faculty Fellow
Darrell Pilling

Lecturer/Laboratory Coordinators
Beth Beason Abmayr
David R. Caprette
Elizabeth Eich
Dereth Phillips

Adjunct Faculty
Richard Behringer
Sarah Bondos
Richard Brennan
Richard Dixon
Daniel Feeback
Robert O. Fox
Vincent Hilser
Kendal Hirschi
Kevin G. Hoff
Olivier Lichtarge
Paolo Moretti
Timothy Palzkill
Debananda Pati
Neal Pellis
Florante A. Quiocho
Clarence Sams
Shelley Sazer
Scott Singleton
Ah-Lim Tsai
Peggy Whitson
Pernilla Wittung-Stafshede

Ecology and Evolutionary Biology

The Wiess School of Natural Sciences

Chair
Evan Siemann

Professors
James S. Coleman
David C. Queller
Joan E. Strassman
Calvin H. Ward

Assistant Professors
Amy Dunham
Nat Holland
Michael Kohn
Nicholas H. Putnam
Jennifer Rudgers
Volker Rudolf
Ken Whitney
Degrees Offered: BA, BS, MA, PhD

Undergraduate Programs—The Departments of Biochemistry and Cell Biology and Ecology and Evolutionary Biology offer a broad range of courses in the biosciences: animal behavior, animal biology, biochemistry, biophysics, cell biology, developmental biology, ecology, endocrinology, evolutionary biology, genetics, immunology, microbiology, molecular biology, neurobiology, plant biology, and advanced courses in these and related areas. Students may elect a BA in biochemistry and cell biology, BA in biological sciences, BS in biochemistry and cell biology, or BS in ecology and evolutionary biology. They also may select courses from the range of topics listed above.

Core courses required of all bioscience majors:

<table>
<thead>
<tr>
<th>Biosciences</th>
<th>Chemistry</th>
<th>Mathematics</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 201/202 Introductory Biology</td>
<td>CHEM 121/122 General Chemistry with Laboratory</td>
<td>MATH 101/102 Single Variable Calculus I and II</td>
<td>PHYS 125/126 General Physics I and II</td>
</tr>
<tr>
<td>BIOS 301 Biochemistry</td>
<td>CHEM 211/212 Organic Chemistry</td>
<td></td>
<td>One Group B BIOS course</td>
</tr>
<tr>
<td>BIOS 211 Introductory Experimental Biosciences</td>
<td>CHEM 215 Organic Chemistry Lab</td>
<td></td>
<td>Two of the following advanced laboratory courses:</td>
</tr>
<tr>
<td>BIOS 213 Introductory Lab in Ecology and Evolutionary Biology</td>
<td></td>
<td></td>
<td>BIOS 311 Advanced Experimental Biosciences</td>
</tr>
<tr>
<td>BIOS 316 Lab in Ecology</td>
<td>BIOS 317 Lab in Behavior</td>
<td></td>
<td>BIOS 313 Introductory Synthetic Biology</td>
</tr>
<tr>
<td>BIOS 317 Lab in Behavior</td>
<td>BIOS 318 Lab in Applied Microbiology</td>
<td></td>
<td>BIOS 316 Lab in Ecology</td>
</tr>
<tr>
<td>BIOS 320/BIOE 342 Lab in Tissue Culture</td>
<td>BIOS 327 Biological Diversity Lab</td>
<td></td>
<td>BIOS 317 Lab in Behavior</td>
</tr>
<tr>
<td>BIOS 330 Insect Biology Lab</td>
<td>BIOS 330 Insect Biology Lab</td>
<td></td>
<td>BIOS 318 Lab in Applied Microbiology</td>
</tr>
<tr>
<td>BIOS 337 Field Bird Biology Lab</td>
<td>BIOS 353 Laboratory Transfer Credit in Biosciences</td>
<td></td>
<td>BIOS 320/BIOE 342 Lab in Tissue Culture</td>
</tr>
<tr>
<td>BIOS 393 Laboratory Transfer Credit in Biosciences</td>
<td>BIOS 413 Experimental Molecular Biology</td>
<td></td>
<td>BIOS 327 Biological Diversity Lab</td>
</tr>
<tr>
<td>BIOS 415 Experimental Physiology</td>
<td>BIOS 530 NMR Spectroscopy and Molecular Modeling</td>
<td></td>
<td>BIOS 330 Insect Biology Lab</td>
</tr>
<tr>
<td>BIOS 532 Lab in Optical Spectroscopy and Kinetics</td>
<td>BIOS 535 Practical X-Ray Crystallography</td>
<td></td>
<td>BIOS 337 Field Bird Biology Lab</td>
</tr>
<tr>
<td>BIOS 533 Bioinformatics and Computational Biology</td>
<td>BIOS 535 Practical X-Ray Crystallography</td>
<td></td>
<td>BIOS 393 Laboratory Transfer Credit in Biosciences</td>
</tr>
</tbody>
</table>
MATH 111 and 112 may be substituted for MATH 101; CHEM 151 and 152 may be substituted for CHEM 121 and 122; CHEM 251 and 252 may be substituted for CHEM 211 and 212; PHYS 101 and 102 or PHYS 111 and 112 and their labs may be substituted for PHYS 125 and 126. See listings in the Courses of Instruction for Group A and B designations. No course may be counted more than once toward any of the major requirements.

One of the advanced laboratory course requirements can be satisfied by taking any of the following: (i) BIOS 310 or BIOS 306 if taken for at least two credits; or (ii) HONS 470/471, if the research supervisor is from one of the biosciences departments or if the research is biological in nature and preapproved by the student’s advisor; (iii) BIOS 412; or (iv) BIOS 393.

BA in Biochemistry and Cell Biology

In addition to the core courses required of all biosciences majors, BA majors within this option also must take:

- MATH 211 or MATH 213
- BIOS 311
- BIOS 341
- Two of the following courses: BIOS 302, BIOS 344, BIOS 352
- Two additional Group A biosciences courses, only one of which may be BIOS 401 or 402

CHEM 310 or CHEM 311 and 312 may be substituted for BIOS 352. NEUR 511/512 or BIOE 430 or BIOE 435 may be substituted for one Group A course. Students may receive credit toward the major for a maximum of three credits of BIOS 390.

BA in Biological Sciences

In addition to the core courses that are required of all biosciences majors, BA majors within this option must take:

- MATH 211, MATH 213, STAT 305, or BIOS 338
- One of the following advanced lab courses: BIOS 311, 313, 316, 317, 318, 320 (BIOE 342), 327, 330, 337, 393, 413, 415, 530, 532, 533, or 535
- One of the following Group A courses: BIOS 302, 341, 344, 352
- One additional Group A course
- Two Group B courses
- One additional Group A or Group B course

Only one of the courses used to satisfy these Group A and Group B requirements may be BIOS 401, 402, 403, or 404. NEUR 511/512 or BIOE 430 or BIOE 435 may be substituted for one Group A course. CHEM 310 or CHEM 311 and 312 may be substituted for BIOS 352. Students may receive credit toward the major for a maximum of three credits of BIOS 390 and three credits of BIOS 391. Students desiring to specialize in ecology and evolutionary biology can choose a Group B course for the Group A or B course and their advanced lab can be BIOS 316, 317, 327, 330, 337, or 393.

BS in Biochemistry and Cell Biology

In addition to the core courses required of all biosciences majors, BS majors must also take:
De partments / Biosciences

- MATH 211 or MATH 213
- BIOS 311
- BIOS 302
- BIOS 341
- BIOS 344
- BIOS 352 or CHEM 312/313
- Three additional Group A bioscience courses

BIOS 401/402 are recommended Group A courses in the BS degree program. NEU 511/512 or BIOE 430 or BIOE 435 may be substituted for one Group A course. CHEM 310 or CHEM 311 and 312 may be substituted for BIOS 352. Students may receive credit toward the major for a maximum of three credits of BIOS 390.

BS in Ecology and Evolutionary Biology

In addition to the core courses required of all biosciences majors, BS majors must also take:

- MATH 211, MATH 213, STAT 305, or BIOS 338
- One of the following advanced laboratory courses: BIOS 316, 317, 327, 330, 337, 393
- One Group A biosciences course
- BIOS 403 and BIOS 404
- Two additional Group B biosciences courses
- One additional biosciences course from Group A or B

NEUR 511 and 512 or BIOE 430 or BIOE 435 may be substituted for one Group A course. Students may receive credit toward the major for a maximum of three credits of BIOS 390 and three credits of BIOS 391.

Advising—Students should contact the appropriate departmental office to be assigned to an advisor. Those pursuing a BS or BA in biochemistry and cell biology should contact that department office. Those pursuing a BS in Ecology and Evolutionary Biology should contact that department office. Those electing a BA in biological sciences may choose the department that most closely corresponds to their interests, and that choice may be changed at any time. Students interested in environmental careers should consult with the ecology and evolutionary biology department for a list of recommended courses. See also Environmental Studies listings and Environmental Science Double Major.

It is recommended that the 100-level mathematics and chemistry courses be taken in the freshman year; that the 100-level physics courses and the 200-level biosciences courses be taken in either the freshman or sophomore year; and that CHEM 211, 212, 215 be taken in the sophomore year. Those with a limited background in chemistry should complete CHEM 121, 122 before taking BIOS 201, 202. Others are urged to take BIOS 201, 202 as freshmen to permit earlier access to advanced level BIOS courses. PHYS 125 and 126 are the preferred physics courses for biosciences majors. However, PHYS 101 and 102 or PHYS 111 and 112 and their labs may be taken instead by those wishing to preserve the option of majoring in a subject for which PHYS 101 and 102 are required.

Note that BIOS 311 is a prerequisite for BIOS 312, 313, and 318. This prerequisite will be strictly enforced, and majors in biological sciences whose interests are primarily in cell and molecular biology, are advised to take BIOS 311 as early as possible to allow for scheduling subsequent lab modules.

An undergraduate major in biosciences must have 48 semester hours in courses numbered 300 or higher to obtain a BA or BS degree. Students also
must complete no fewer than 60 semester hours outside the departmental requirements. These must include the courses needed to satisfy the university distribution requirements.

Accelerated Rice BA–BS/PhD Program in Biochemistry and Cell Biology

Qualified undergraduate students at Rice can apply to enroll in the biochemistry and cell biology graduate program in their senior year. The course requirements for graduate studies are therefore completed at the same time as the upper-level undergraduate degree requirements; laboratory research performed as part of the undergraduate thesis project can serve as the initial phases of the PhD thesis work. As a result, the graduate careers of these students will be accelerated by at least one full year, and, in principle, such students should be able to obtain their PhD degrees approximately three years after obtaining their BA or BS degree.

Criteria for selection include academic performance (GPA ≥ 3.3), GRE scores, motivation, previous research experience, and personal qualities. Selection is made by the department admissions committee.

Mechanics of the Program

The program requires the completion of two and one-half years (or their equivalent) of undergraduate studies at Rice before a student can be considered for enrollment in the accelerated PhD program. To continue in the program, the following requirements must be fulfilled: (1) The student must take the GRE before receiving the BA or BS degree and receive scores greater than 80 percent in the Analytical and Quantitative Tests; (2) students also must maintain at least a B average in all courses in their senior year; and (3) the usual graduate requirements will apply for continuation in the program.

Degree Requirements for MA and PhD in Biochemistry and Cell Biology

Admission—Applicants for graduate study in the Department of Biochemistry and Cell Biology must have:

- BA or BS degree in biochemistry, biology, chemistry, chemical engineering, physics, or some equivalent
- Strong ability and motivation, as indicated by academic record, Graduate Record Examination (GRE) scores, and recommendations

Although the department offers an MA degree in biochemistry and cell biology, only on rare occasions are students who do not intend to pursue the PhD degree admitted to the graduate program. The department provides a program guide titled “Graduate Handbook for Biochemistry and Cell Biology” that is updated annually. For general university requirements, see Graduate Degrees in the *General Announcements*.

Both MA and PhD Programs—Most of the formal course studies will be completed in the first year of residence to allow the students to commence thesis research at the end of their second semester at Rice. During the first year, all graduate students will be advised by the Graduate Advisory Committee. This committee will determine the formal course program to be taken during the first year in residence. Students are required to have training in biochemistry, cell biology, genetics, and physical chemistry or biophysics. If students are missing formal training in these subjects, they are required to take the equivalent background courses during their first year. The corresponding courses at Rice include the following:
BIOS 301 Biochemistry
BIOS 341 Cell Biology
BIOS 344 Molecular Biology and Genetics
BIOS 352 Physical Chemistry for the Biosciences

All PhD students are required to take the following graduate-level courses:

BIOS 575 Introduction to Research
BIOS 581, 582 Graduate Research Seminars
BIOS 583 Molecular Interactions
BIOS 587 Research Design, Proposal Writing, and Professional Development
BIOS 594 Responsible Conduct of Research
BIOS 599 Graduate Teaching (in second year)
BIOS 701/702 Graduate Lab Research (rotations in first year)

Students must also take two units from the following set of advanced courses:

BIOS 525 Plant Molecular Biology (one unit)
BIOS 530, 532, 533, 535 Graduate Laboratory Modules in Molecular Biophysics (1/2 unit each)
BIOS 544 Developmental Biology (one unit)
BIOS 545 Advanced Molecular Biology and Genetics (one unit)
BIOS 551 Molecular Biophysics (one unit)
BIOS 552 Molecular Biophysics II (one unit)
BIOS 588 Advanced Cell and Developmental Biology (one unit)

Students should complete BIOS 583 and BIOS 587 in their first year, and they will be responsible for the content of those course programs in their admission to candidacy examinations (see below). Students also gain teaching experience by serving as discussion leaders and graders in undergraduate sections during their second year. Safety and ethics presentations are provided for first-year students.

Evaluation of Progress in Graduate Study—The Graduate Advisory Committee evaluates each student’s undergraduate record and recommends course work based on the requirements. Thesis advisors may require additional courses before taking the admission to candidacy examination.

At the end of each semester, the department chair, in consultation with the faculty, reviews student performance in formal course work. Students must maintain at least a B average, perform satisfactorily in BIOS 701/702, and demonstrate outstanding motivation and potential for research. Thesis lab assignments are made based on student and faculty preferences following research rotations.

Evaluation after the first year includes:

- Ongoing review of research progress by the thesis advisor
- A research progress review examination given each year by the student’s Research Progress Review Committee
- Presentation of research progress at least once a year until submission of a complete doctoral thesis
- Completion of an oral admission to candidacy examination before the end of the student’s fourth semester
- Defense of the PhD thesis research and text in a final public seminar presentation and oral examination attended by the student’s thesis committee

MA Program—All the above requirements and evaluation procedures apply to MA candidates with the following exceptions. The research progress review examination held during the MA student’s second full year, which is identical in format to that for PhD students, replaces the admission to candidacy examination; no other preliminary examination is held before the final oral defense of the master’s thesis. MA candidates must complete a thesis and
make a public oral defense of their research work to their thesis committee and other interested parties.

Degree Requirements For MS, MA, and PhD in Ecology and Evolutionary Biology

Admission—Applicants for graduate study in the Department of Ecology and Evolutionary Biology must have:

- BA or BS degree or equivalent that provides a strong background in biology
- Strong ability and motivation, as indicated by academic record, Graduate Record Examination (GRE) scores, and recommendations
- Scores from the GRE Biology subject exam are optional but can be helpful, particularly for students with nontraditional backgrounds in biology

These requirements do not preclude admission of qualified applicants who have majored in areas other than biology. Although the department offers MA and MS degrees, only on rare occasions are students who do not intend to pursue the PhD admitted to the graduate program.

Students should have completed coursework in physics, mathematics (including calculus), and chemistry (including organic chemistry) prior to admission. Deficiencies in these subject areas or in specific areas of biology should be made up during the first year of residence; some may be waived at the discretion of the student's advisory committee and the department chair.

Entering students will meet with a faculty advisor to form a course of study of the first year. All first year students will complete the core course in ecology and evolutionary biology (BIOS 569) in their first semester. All graduate students are required to complete BIOS 585/586 (Graduate Seminar in Ecology and Evolutionary Biology) and two semesters of BIOS 591 (Graduate Teaching). Students must maintain a grade average of B in courses taken in the department and satisfactory grades in courses taken outside the department.

Students must demonstrate satisfactory progress in their degree program in annual reviews by a departmental committee. The review process requires that each student present a public seminar on their research, prepare a written report on their progress, and participate in an interview with the departmental committee. For general university requirements, see Graduate Degrees (in General Announcements).

MS Program. In addition to the general university requirements and those listed above, the master of science in ecology and evolutionary biology requires at least 10 hours of research credit.

MA Program. In addition to the general university requirements and those listed above, the master of arts in ecology and evolutionary biology requires the completion and public defense of a thesis embodying the results of an original investigation.

PhD Program. In addition to the general university requirements and those listed above, the PhD degree in ecology and evolutionary biology requires:

- Passing the admission to candidacy examination given by the Graduate Thesis Committee. (Committee will be composed of at least four members. At least three must be members of the EEB graduate faculty.)
- Complete an original investigation and a doctoral thesis with the potential to produce publications in reputable, peer-reviewed scientific journals
- Present a departmental seminar on the research
- Publicly defend the doctoral thesis