Degrees Offered: MS

Rice University introduced the professional master’s degree in environmental analysis and decision making in fall 2002. This degree is geared to teach students rigorous methods that are needed by industrial and governmental organizations to deal with environmental issues. As an interdisciplinary program, it aims to give students the ability to predict environmental problems, not just solve them. It emphasizes core quantitative topics such as statistics, remote sensing, data analysis, and modeling. In addition, it teaches laboratory and computer skills and allows students to focus their education by taking electives in relevant fields.

The environmental analysis and decision making degree is part of the professional master’s program at Rice housed in the Wiess School of Natural Sciences. These master's degrees are designed for students seeking to gain further scientific core expertise coupled with enhanced management and communications skills. These degrees instill a level of scholastic proficiency that exceeds that of the bachelor’s level, and they create the cross-functional aptitudes needed in modern industry. Skills acquired in this program will allow students to move more easily into management careers in consulting or research and development, design, and marketing of new science-based products.

Degree Requirements for MS in Environmental Analysis and Decision Making

In addition to the core science courses, students are required to complete a three- to six-month internship and take a set of cohort courses focusing on business and communications. At the conclusion of the internship, students must present a summary of their internship project in both oral and written form as part of the professional master’s seminar.

Part-time students who already work in their area of study may fulfill the internship requirements by working on an approved project with their current employer. For general university requirements for Graduate Study, see Graduate Students section, pages 2–3, and also see Professional Degrees, pages 4–5.

Admission

Admission to graduate study in environmental analysis and decision making is open to qualified students holding a bachelor’s degree in a related field that includes general biology, chemistry, calculus, differential equations, and linear algebra. Department faculty evaluate the previous academic record and credentials of each applicant individually.
Science core courses

CEVE 401 Introduction to Environmental Chemistry (with lab) (F)
ESCI 450 Remote Sensing (S)
STAT 685 Quantitative Environmental Decision Making (S)

Plus 3 courses from the following:

Group A

STAT 305 Introduction to Statistics for Biosciences (F, S)
STAT 385 Methods for Data Analysis (S)
STAT 405 Statistical Computing (F)
STAT 410 Introduction to Statistical Computing and Linear Models (F)
STAT 621 Computational Finance II: Time Series Analysis (S)
STAT 622 Bayesian Data Analysis (S)

Group B

CEVE 307 Energy and the Environment (S)
CEVE 412 Hydrology and Watershed Analysis (S)
CEVE 504 Atmospheric Particulate Matter (S)
CEVE 511 Atmospheric Processes (F)
CEVE 534 Fate and Transport of Contaminants in the Environment (F)
CEVE 536 Environmental Biotechnology and Bioremediation (S)
CEVE 550 Environmental Organic Chemistry (S)

Cohort Courses

NSCI 501 Professional Master’s Seminar (F, S) [required for two semesters]
NSCI 511 Science Policy and Ethics (S)
NSCI 512 Professional Master’s Project (F, S)
NSCI 610 Management in Science and Engineering (F)

Internship

An internship is conducted under the guidance of a host company, government agency, or national laboratory. A summary of the internship project is required in both oral and written form as part of the professional master’s project.

Elective Courses

Note: Each of these electives is not offered every year, and some courses may have prerequisites or require instructor permission.

Students will choose four elective courses, three of which should be from one of the focus areas. At least one elective should be from the management and policy focus area. Recommended courses include, but are not limited to, the following:

Sustainable Development

BIOS 322 Global Ecosystem Dynamics (S)
BIOS 325 Ecology (S)
CEVE 307 Energy and the Environment (F)
CEVE 313 Uncertainty and Risk in Urban Infrastructures (F)
CEVE 406 Introduction to Environmental Law (S)
CEVE 409 Sustainable Development (S)
CEVE 434 Fate and Transport of Contaminants in the Environment (F)
CEVE 511 Atmospheric Processes (F)
CEVE 592 Reliability of Complex Urban Systems (S)
ECON 438 Business, Law and Economics (S)
ECON 480 Environmental Economics (S)
MGMT 661 International Business Law (S)

Management and Policy

CEVE 322 Engineering Economics and Management (S)
CEVE 406 Introduction to Environmental Law (S)
ECON 480 Environmental Economics for Engineers (S)
MGMT 721 General Business Law (S)
MGMT 661 International Business Law (S)
MGMT 674 Production and Operations Management (F)

MGMT 674 Production and Operations Management (F)
MGMT 676 Social Enterprise (S)
MGMT 721 General Business Law (S)
STAT 684 Risk Assessment (F)
SOCI 367 Environmental Sociology (S)
MGMT 676 Social Enterprise (S)
MGMT 721 General Business Law (S)
NSCI 625 New Venture Creation in Science and Engineering (S)
SOCI 367 Environmental Sociology (S)

Biological Sciences
BIOS 322 Global Ecosystem Dynamics (S)
BIOS 325 Ecology
BIOS 424 Microbiology and Biotechnology
BIOS 425 Plant Molecular Biology (F)
CEVE 536 Environmental Biotechnology
ESCI 468 Climate Change and Human Civilization (S)

Chemistry
CENG 630 Chemical Engineering of Nanostructured Materials (S)
CEVE 511 Atmospheric Chemistry and Physics (F)
CEVE 550 Environmental Organic Chemistry (S)

Fluid Dynamics and Transport
CENG 571 Flow and Transport in Porous Media I (S)
CENG 671 Flow and Transport in Porous Media II (F)
CEVE 454 Computational Fluid Mechanics (F)
MECH 371 Fluid Mechanics I (F)
MECH 372 Fluid Mechanics II (S)
MECH 454 Computational Fluid Mechanics (F)
MECH 554 Finite Element Methods in Fluid Mechanics (F)

Engineering
CEVE 322 Engineering Economics for Engineers
CEVE 505 Engineering Project Management (F)
CEVE 511 Atmospheric Processes (F)
CEVE 530 Concrete Building Design (F)
CEVE 534 Fate and Transport of Contaminants in the Environment (F)
CEVE 640 Advanced Topics in Environmental Engineering (F)

Advanced Computation
CAAM 378 Introduction to Operations Research and Optimization (F)
CAAM 420 Computational Science I (F)
CAAM 452 Computational Methods for Differential Equations (S)
CAAM 454 Optimization Problems in Computational Engineering and Science (S)
CAAM 551 Numerical Linear Algebra (F)
CAAM 563 Engineering Approach to Mathematical Programming (F)
CEVE 554 Computational Fluid Mechanics (F)
CEVE 679 Applied Monte Carlo Analysis (F)
COMP 361 Visual Methods for Science and Engineering
ESCI 441 Geophysical Data Analysis (F)
ESCI 454 Geographic Information Systems (F)
MECH 343 Modeling of Dynamic Systems (F)
MECH 517 Finite Element Analysis (S)
MECH 420 Feedback Control of Dynamical Systems (F)
STAT 421 Methods in Computational Finance II (S)
STAT 422 Bayesian Data Analysis (S)
STAT 431 Mathematical Statistics (F)
STAT 486 Computational Statistics: Market Models
STAT 540 Practicum in Statistical Modeling (S)
STAT 541 Multivariate Analysis (S)
STAT 553 Biostatistics (S)
...and others